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Abstract

Computation of a turbulent dilute gas–solid channel flow has been undertaken to study the influence of using wall-
corrected drag coefficients and of the lift force on the dispersed phase characteristics. The incompressible Navier–Stokes
equations governing the carrier flow were solved by using a direct numerical simulation approach and coupled with a
Lagrangian particle tracking. Calculations were performed at Reynolds number based on the wall-shear velocity and chan-
nel half-width, Res � 184, and for three different sets of solid particles. For each particle set, two cases were examined, in
the first one the particle motion was governed by both drag and lift wall-corrected forces, whereas in the other one, the
standard drag force (not corrected) was solely acting. The lift force model used represents the most accurate available
expression since it accounts for weak and strong shear as well as for wall effects. For this study, we considered elastic col-
lisions for particles contacting the walls and that no external forces were acting. Present results indicate that the use of the
lift force and of the drag corrections does not lead to significant changes in the statistical properties of the solid phase, at
the exception of some statistics for the high inertia particles.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In order to simulate accurately the dispersion or the deposition phenomena of solid particles in a channel
flow, sophisticated numerical techniques, such as direct numerical or large eddy simulation (DNS and LES)
coupled with a particle Lagrangian tracking, are often used. Using these numerical approaches requires a
choice on the primary forces acting on the particle, and then, on the expressions used for modelling these forces.
It can be seen from previous studies of turbulent flows laden with solid particles that the choice of the forces is
not universal, especially in wall-bounded flows. Generally, this choice can depend on the phenomena studied.
For instance, in particle deposition studies, the lift force is often taken into account (Wang and Squires, 1996a;
Wang et al., 1997; Marchioli and Soldati, 2002), and sometimes, in addition the drag force is corrected due to
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the presence of the walls (see the work of Chen and McLaughlin (1995)). A possible way to make a choice about
the forces is to run simulations in which different forces are accounted for and then to verify which case better
reproduces experimental data. For instance, numerous numerical studies have been devoted to the simulation
of the experiment by Kulick et al. (1994). Wang and Squires (1996b), using LES under one way coupling
assumption and disregarding the drag force correction, tried to simulate the two-phase flow studied by Kulick
et al. (1994), however discrepancies between numerical and experimental data were found, especially near the
wall. Another attempt is due to Fukagata et al. (1999), who used LES to examine different cases, with one-, two-
and four-way coupling effects, using or not drag correction and with two different particle-wall boundary con-
ditions (elastic-bouncing or absorbing walls); however, in their simulation, the lift force was not taken into
account. Fukagata et al. (1999) found that the agreement with the experimental data, even under four-way cou-
pling, was still not satisfactory. Recently, Benson et al. (2005) explained the difficulty of earlier numerical sim-
ulations to reproduce this experiment by examining the effects of wall roughness on the gas and particle phases
in the same vertical channel flow facility as Kulick et al. (1994). They concluded that some of the dispersed
phase statistics were a consequence of the poorly defined roughness in the development duct of the channel used
by Kulick et al. (1994). The study by Fukagata et al. (1999) has enabled to examine the influence of considering
or not the drag correction and of different coupling mechanisms on the dispersed phase statistics, however.

The choice of acceptable assumptions and of the hydrodynamic force models has not yet been clearly stated
for the numerical simulations of gas-particles flows. Many questions emerge such as the use of the lift force in
the particle dispersion study. And if the lift force is included in the particle equation of motion, which expres-
sions should be used to model it. Wang et al. (1997) introduced a lift force model called ‘‘optimum’’ lift force
in order to better predict the dependence of the deposition velocity on particle relaxation time. This optimum
lift force takes into account the force due to shear as well as the force due to the presence of the wall. The
model is in fact a bundle of different expressions derived in simple flow and is the most appropriated available
model of the lift force acting on solid particles in wall-bounded shear flows. Wang et al. (1997) have shown
that in deposition study the overall effect of the optimum lift force on their deposition rate results is small.
However, as emphasized by them, the small effect on predictions of particle deposition should not be inter-
preted as the force itself being inaccurate or unimportant.

The objective of the present paper is to discuss the importance of using the lift force and wall-corrections
of the drag coefficient for modelling the motion of solid particles in a fully-developed channel flow without
external forces. This investigation is conducted by means of direct numerical simulation at moderate Rey-
nolds number. In order to judge the influence of the near-wall corrections, two different cases are examined,
in the first one the correction of the drag coefficient and the optimum lift force are taken into account,
whereas in the second one, the simulations are conducted without using them. The comparison is made
on different kinds of statistics such as the mean drag forces, the mean particle distribution and velocities,
the root mean square of the fluid and particles velocities, the drift velocities, and finally the fluid-particle
covariance tensor. This comparison is presented for three sets of particles, characterized by different relaxa-
tion times.

2. Channel flow DNS and solid particle tracking

The DNS solver, second order accurate in space and in time (Orlandi, 2000), performs the simulation of a
turbulent channel flow at Reb = 2800 (based on channel half-width d and bulk velocity Ub) corresponding to
the Reynolds number based on the wall shear velocity equal to 184. The domain size in the streamwise, wall-
normal, and spanwise direction is 2.5pd · 2d · 1.5pd and the corresponding grid 192 · 128 · 160, respectively.
The DNS code was modified to perform Lagrangian tracking of solid particles. The numerical simulation of
solid particle trajectories is restricted to spherical particles smaller than the dimension (in wall units) of the
smallest cell Dy+ = 1 and consequently smaller than the smallest Kolmogorov length scale. Therefore, we
made use of the point-force approximation. The solid particle volume fraction is assumed to be relatively small
and particle–particle interactions are neglected. In addition, considering that the ratio between the particle and
fluid density obeys qp/qf� 1, the particle equation of motion can be written without taking the added mass,
history and spin induced lift forces into account. Under these considerations the equation governing the
motion of a solid particle is
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þ F L
i

mp

; ð1Þ
where F L
i represents the shear-induced lift force, mp is the mass of a single particle, vi are the particle’s velocity

components, up
i are the fluid velocity components interpolated at the solid particle’s location defined by

up
i ðtÞ ¼ uiðxp;iðtÞ; tÞ. The determination of the interpolated fluid velocity at particle location is therefore crucial.

For this purpose a 3D Hermite interpolation based on cubic polynomials is used, this interpolation being a
good compromise between accuracy and CPU time expenses (Rovelstad et al., 1994). The aerodynamic forces
considered here are the non-linear drag and the shear-induced lift force, both of them are corrected for near-
wall effects. The particle relaxation time sp is expressed in terms of the drag coefficient CD and the magnitude
of the relative velocity kVrk between the particle and the fluid at the particle location.

3. Near-wall force corrections

3.1. Corrected drag force

The drag coefficient CD is computed from the correlation proposed by Morsi and Alexander (1972) since
the particle Reynolds number Rep may exceed unity. The particle relaxation time, which obeys sp ¼ qpd2

p=18l
in the Stokes regime (dp being the particle diameter), is expressed more generally in terms of CD as
sp ¼
4

3
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qf
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CDkVrk
: ð2Þ
Close to the wall, the drag is corrected according to the direction of the particle motion, as recommended
by Rizk and Elghobashi (1985): the first correction was derived by Faxen (1923) for a particle moving parallel
to the wall, and the second one was derived by Maude (1963) for a particle moving normal to the wall. The
corresponding correction coefficients are
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where l is defined as the distance between the particle centre and the nearest wall. Such drag corrections are
theoretically valid for small values of dp/l, however Rizk and Elghobashi (1985) pointed out that the approx-
imate expression of Ck (Eq. 3) is in excellent agreement with the exact analytical results up to dp/l = 1.53. It
should be noted that another expression for C? has been proposed by Wakiya (1960)
C? ¼ 1� 9
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dp
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: ð5Þ
This expression is correct to O((dp/2l)3), whereas the expression from Maude (1963) is an approximation of C?
correct to O((dp/2l)2). One could show, using McLaurin series expansion, that the approximated expression of
Wakiya (1960) restricted to O((dp/2l)2) is exactly the same as the one proposed by Maude (1963). The exact
expression of the drag correction factor, given by infinite series, was established by Brenner (1961) using
bipolar coordinate solution of the creeping motion equations. According to Brenner (1961), C? !1 when
dp/2l! 1, whereas using the expression proposed by Maude (1963) C? ! 3.39. From the computation of
these two expressions, it can be seen that the formula by Maude (1963) underestimates the exact solution from
Brenner (1961) when 2l/dp < 4. Using Brenner’s expression would lead to higher drag correction, and conse-
quently, could increase the residence time of the particles very near the wall. However, this could only occur in
a very thin zone and for light particles.

The drag correction coefficients are introduced in the simulations using a corrected particle relaxation time
which is simply the particle relaxation time divided by the applied corrections, sk;?p corrected ¼ sp=Ck;?. According
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to Eqs. (3) and (4), the corrected particle relaxation time is found to be smaller in the vicinity of the wall and is
dependent on the direction of the particle motion.

3.2. Lift force

The motion of solid particles was computed using the ‘‘optimum’’ lift force as defined by Wang et al. (1997).
This force can be divided into two parts, the first one represents the contribution of the velocity shear and the
other one represents the presence of the wall. The lift force is only valid within the limit of small particle Rey-
nolds number and in the case of non-rotating particles. The formulation of the optimum lift force used in this
study does not differ from the one applied by Wang et al. (1997) in their numerical simulation of particle-laden
channel flow using LES. The optimum lift force is a bundle of different expressions derived generally in simple
flow. The regions of applicability of these different expressions are specified by the Stokes and Saffman length
scales
Ls ¼
m
jV r;1j

and LG ¼
ffiffiffiffiffiffiffi
m
jGj

r
ð6Þ
and also by two dimensionless parameters
lþ ¼ l
LG

and � ¼ signðGV r;1Þ
Re1=2

G

Res

; ð7Þ
where V r;1 ¼ v1 � up
1 is the instantaneous streamwise velocity difference between the particle and the fluid at the

particle location, G is the wall-normal gradient of the instantaneous streamwise fluid velocity at the particle
position. The dimensionless parameter � is expressed as a function of two different Reynolds numbers, Res

and ReG, the first one is based on Vr,1 and dp whereas the second one is based on G and dp. Therefore, in
the case where the particle is located at a distance from the wall lower than Ls and LG, the dimensional lift
force takes the following form Cherukat and McLaughlin (1994):
F L
2
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pV 2
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where ap is the particle radius, j = ap/l and K = (apG)/Vr,1.
For a particle moving outside this region the dimensional lift force takes the following form:
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where J is a parameter that models the overall contribution of the shear-induced lift and the wall-induced lift.
The function J can be divided into two parts so that J = Ju + Jw, where Ju and Jw model the shear- and wall-
induced lift, respectively. In the present study, these two functions were calculated following the procedure
proposed by Wang et al. (1997). Consequently, we will not fully described it hereafter, only a minor difference
will be described. This difference concerns the way of computing Jw from the expression proposed by Vasseur
and Cox (1977) which is
J ¼ � 2p2

3j�j I þ J u; ð10Þ
where I is
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where l* = l/Ls. Vasseur and Cox (1977) evaluated this integral numerically since it has no analytical solution.
In order to compute Jw, one could numerically calculate I for each particle at each time step, however in order
to get rid of this tedious task, best fit equations were used to approximate the values of I numerically com-
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puted by Vasseur and Cox (1977). That method was also preferred by Chen and McLaughlin (1995), but con-
trary to us they approximated the integral without taking into account the ratio 3/(4pl*2). For the present sim-
ulation, we developed best fit equations for I based on 4th order polynomials which are expressed as
Fig. 1.
and (1
I ¼ �3:1:10�4l�4 þ 3:53:10�3l�3 � 1:088:10�2l�2 � 9:86:10�3l� þ 9:57:10�2; ð12Þ

when 0 6 l* 6 4.5,
I ¼ 6:78:10�7l�4 � 4:81:10�5l�3 þ 1:26:10�3l�2 � 1:485:10�2l� þ 7:05:10�2; ð13Þ

when 4.5 < l* 6 25, and
I ¼ 0: ð14Þ

when l* P 25.

As can be seen from Fig. 1, this way of estimating I yields better agreement, especially for small values of l*,
with the numerical results obtained by Vasseur and Cox (1977) in comparison with the method chosen by
Chen and McLaughlin (1995). It has to be emphasized that the optimum lift developed by Wang et al.
(1997) was derived from previous existing expressions which were developed under various assumptions. Con-
sequently, the optimum lift force can be considered as valid in a steady flow with weak or strong linear shear,
and for particles moving at a constant velocity and parallel to the wall. Despite these restrictions, this formu-
lation is more suitable for the simulation of particle-laden wall-bounded flows than the Saffman formula. This
is due to the fact that the Saffman formula was designed considering unbounded flows with strong linear shear.

4. Numerical simulation results

4.1. Choice of the particle parameters

The simulations presented here were run for three sets of particles characterized by different Stokes particle
response times in wall units, sþp ¼ 1:2, 6.8 and 27.1, in order to investigate the influence of the optimum lift
force and corrected drag force for various particle inertia. The corresponding dimensionless diameters are
dp/d = 0.5 · 10�3, 0.7 · 10�3 and 1.4 · 10�3, for which density ratios, qp/qf, are 2500, 7333 and 7333, respec-
tively. Furthermore, the numerical computations for these three sets of particles were carried out with and
without including the optimum lift force and the wall-corrected drag force in the equation of motion. These
two different cases will be referred to hereafter as case 1 and case 2, respectively. For the initialization and the
computation of the statistics of the dispersed phase, the domain is divided in the wall-normal direction into
128 slices, with the slice thickness being equal to the wall-normal grid spacing. Initially, 5000 solid particles
l *

I

10-1 100 101
0

0.02

0.04

0.06

0.08

0.1

0.12

Numerical results for I as a function of l*. Lines: (—) Vasseur and Cox (1977); (– –) Chen and McLaughlin (1995); (s) Eqs. (12)
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were distributed homogeneously in each slice, and their initial velocity was set equal to the surrounding fluid
velocity. The total number of particles was thus 640000. Statistics on the dispersed phase were started after a
time lag of approximately t+ = 600 in order to get results independent of the imposed initial conditions, more-
over this time lag is the time necessary for particle statistics (with the exception of the mean concentration) to
reach a stationary state. Concerning the smooth wall boundary conditions of the dispersed phase, perfectly
elastic collisions were assumed when the particle centre was at a distance from the wall lower than one radius.
Furthermore, as soon as particles moved out of the computational domain, they were re-introduced via peri-
odic boundary conditions.

4.2. Balance between the mean drag and lift forces

Before presenting the results, we have to recall that the wall-corrected drag coefficients and the lift force
expressions are strictly valid if Rep� 1. In order to verify the validity of the latter hypothesis during the sim-
ulations, an a posteriori computation of the mean particle Reynolds number hRepi = hkVrkidp/m was con-
ducted. The mean magnitude of the relative velocity was approximated from the mean and the variance of
the relative velocity by hkVrki � ðhV r;iihV r;ii þ hV 0r;iV 0r;iiÞ

1=2. The maximum values of hRepi, calculated from
the approximated mean relative velocity magnitude, are 0.03, 0.17 and 0.65 for sþp ¼ 1:2, sþp ¼ 6:8 and
sþp ¼ 27:1, respectively. Therefore, even for the largest particles, errors occurring in the estimation of the lift
force and drag correction are not expected to significantly affect the dispersed phase statistics presented
hereafter.

The average streamwise and wall-normal drag force components acting on particles per unit mass, f D
1 and

f D
2 , respectively, are plotted in dimensionless form (with respect to us and d) in Fig. 2. These forces have been

computed as a function of y+ for sþp ¼ 1:2, sþp ¼ 6:8 and sþp ¼ 27:1 particles, using or not the wall-corrections.
From Fig. 2(a), it can be seen that the effects of the correction on the drag coefficient are negligible for the
sþp ¼ 1:2 particles in the streamwise and wall-normal directions. The same behaviour is noticed for
sþp ¼ 6:8. However, for the largest inertia, the mean streamwise drag force per unit mass decreases when
the drag corrections are applied except in the region y+ > 100. From our calculations, the mean streamwise
relative velocity (not shown here) is also seen to decrease when the corrections are used. Thus a possible expla-
nation is that the solid particles which arrived in the near-wall region encounter low fluid velocity, and if wall
corrections are applied, the drag force increases and thus the particles decelerate more rapidly than if no wall-
corrections were used. This rapid deceleration induces a diminution in the mean relative velocity and then in
the mean streamwise drag force. On the contrary, in the wall-normal direction no significant effect of the use
or not of the wall-correction of the drag coefficient is seen. From a qualitative point of view, it can be observed
that the drag force per unit mass in the streamwise or in the wall normal directions decreases with increasing
particle inertia. The mean drag force per unit mass can also be seen as a part or the whole mean acceleration
undergone by the particles, thus this trend just characterized the well-known property of low particle inertia to
respond more quickly to the turbulent fluid fluctuations than high particle inertia. In order to quantify the
importance of the lift force with respect to the drag force, the ratio of the lift force to the wall-normal com-
ponent of the drag force is shown in Fig. 3 for sþp ¼ 1:2, sþp ¼ 6:8 and sþp ¼ 27:1. From these results, it is clear
that the ‘‘optimum’’ lift force does not represent a significant contribution in the particle motion at the excep-
tion of the region y+ < 5 for the largest particles. The lift force exceeds the drag force by 6.5 times, however in
this part of the channel the forces acting on the particles are small. Consequently, the lift force would certainly
not change considerably the overall behaviour of the particles having the largest inertia. Taking these obser-
vations into consideration, the corrections of the drag coefficient as well as the ‘‘optimum’’ lift force are not
expected to significantly influence the statistics presented hereafter.

4.3. Particle distribution

An important feature of gas–solid flows is the concentration of particles across the channel width. In Fig. 4
the mean concentration profiles normalized by the bulk concentration are presented. As can be seen, there is
no real influence of the corrections of the drag and optimum lift forces on particle concentration profiles
except in the region very close to the wall for highest particle inertia. A log–log scale is used in order to better
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distinguish the concentration in the vicinity of the wall and to better differentiate the profiles for each
relaxation time, however one has to be aware that the differences are diminished. At the wall, the near-wall
corrections induce a decrease of about 10% in the mean concentration of the sþp ¼ 27:1 particles. On the con-
trary, these near-wall corrections make the concentration increase for 1 < y+ < 4. As can be seen, as inertia
increases the particle concentration increases in the viscous sub-layer and decreases for higher y+. Note that
there is no large difference between the profiles of intermediate and high particle inertia. However, in the near-
wall region it is noticed that for larger particle relaxation time, the wall particle concentration exceeds the
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mean concentration in the channel by 50 times. In such a case, the ‘‘one-way coupling’’ hypothesis is obviously
not correct. Furthermore, the assumptions of neglecting the influence of particle-particle collisions and real
particle-wall collisions appear utterly unjustified, and could be of some importance in the prediction of particle
dispersion and deposition phenomena near the wall. Nevertheless, such results, which are consistent with the
results reported in the literature (Caporaloni et al., 1975), can be explained by the turbophoresis phenomena
which combines the particle inertia effect and the wall-turbulence distribution (Reeks, 1983). From a physical
viewpoint, the accumulation of particles in the proximity of the wall can be explained by the presence of typ-
ical vortices named ‘‘offspring vortices’’. According to Marchioli and Soldati (2002), these vortices seem to be
responsible for the particle accumulation under the low-speed streaks which are long-lived wall structures.

4.4. Dispersion results

4.4.1. Fluid and particle mean streamwise and rms velocities

Fig. 5 shows the mean streamwise velocity profile for both particles and fluid as a function of the wall-normal
coordinate y+. Profiles were averaged over a time t+ = 800. As already observed in a channel flow (Picciotto
et al., 2004) or in a pipe flow (Portela et al., 2002), the particle inertia effect is seen to be negligible except outside
the viscous sublayer, in the region 5 < y+ < 50. This particle behaviour can be explained by the trend of particles
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to accumulate in the low speed streaks characterized by a negative streamwise fluid fluctuating velocity at par-
ticle’s location (see Fig. 8). The mean streamwise particle velocity is seen to not be affected by the use of the
correction of the drag and of the optimum lift force in the case of small particle inertia, while the use of these
near-wall corrections yields a slight decrease of the mean streamwise velocity for the sþp ¼ 27:1 particles in the
near-wall region. From the particle rms velocity profiles (Fig. 6), a similar conclusion can be drawn in the
streamwise direction. However, in the wall-normal and spanwise directions, the rms velocities are not signifi-
cantly affected by the wall-corrections even in the vicinity of the wall. Similarly the force corrections do not
affect the results on the off-diagonal component (see Fig. 7).

4.4.2. Drift velocities
Fig. 8 shows the drift velocity hu0p1 i profiles as a function of the wall-normal coordinate y+. No real influence

of the corrections of the forces are clearly noticed. The use of the optimum lift force and corrections of the
drag coefficient seems therefore to have a negligible impact on particle statistics such as the drift and particle
velocities.

Physical considerations can be emphasized from the values of the mean drift velocities (in the streamwise
and wall-normal directions). Negative values of the mean streamwise drift velocity are observed whereas
positive values of the wall-normal drift velocities appear for y+ < 45 and this trend is inverted for y+ > 45.
However, the cross-over point is not the same in the streamwise or wall-normal directions. The value of
the cross-over point is the same as obtained by Picciotto et al. (2004) in the wall-normal direction, the curves
cross over at y+ � 45 whatever the inertia. In the streamwise direction, the curves cross over at y+ � 25 what-
ever the inertia. Such negative values of the mean streamwise drift velocity are physically associated with the
preferential concentration phenomenon. Particles accumulate in streamwise oriented streaks correlated with
the so-called low speed streaks in wall turbulence, characterized by negative values of the mean streamwise
drift velocity. At the same time, positive values of the wall-normal drift velocity are noticed (see Fig. 8) for
higher particle inertia, meaning that particles sample preferentially ejection-like environment as previously
observed (Picciotto et al., 2004). The wall-normal drift velocity becomes negative outside the near-wall region
reaching a local maximum at y+ � 75. Sweep and ejection events seem to be to responsible for the particle
distribution in the channel. By referring to the quadrant analysis (Wallas et al., 1972) particle transfer fluxes
can be elucidated as done by Marchioli and Soldati (2002). The product between instantaneous streamwise
and wall-normal drift velocities can be considered as an instantaneous realization of the Reynolds stresses,
and the sign of such a product reveals four types of events. The events which are of particular interest are
the ones which correspond to a negative value of the instantaneous streamwise drift velocity associated with
a positive value of wall-normal one (so-called Q2 type event) and the second one is related to positive values of
the instantaneous streamwise drift velocity and negative values of the instantaneous wall-normal velocity
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Fig. 6. Root mean square of the fluid and particle velocities. (a) Streamwise, (b) wall-normal and (c) spanwise. Symbols and lines: same as
in Fig. 5.
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(so-called Q4 type event). The Q2 type event characterizes the particle transfer from the wall region to the outer
flow (ejection) in opposite to the sweeps events which drive particles to the wall corresponding to the Q4 type
event. The scenario proposed by Marchioli and Soldati (2002) where sweeps and ejections events play a role on
particles transfer via the quadrant analysis seems to be valid according to the results obtained in the present
study. We have also tested the influence of the force’s corrections on the fluid Reynolds tensor at the solid
particle location (results not shown here) and the same conclusion was drawn: the results are not sensitive
to the near-wall force corrections.
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4.4.3. Fluid-particle covariances

Figs. 9 and 10 show the diagonal and off-diagonal components of the fluid-particle covariance tensor,
respectively, as a function of the wall-normal coordinate y+. No real influence of the corrections of the forces
on such statistics is clearly observed. A little decrease is obtained for the intermediate inertia in the streamwise
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Fig. 9. Diagonal components of the covariance fluid-particle tensor. Symbols and lines: same as in Fig. 4.
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direction. The present results are conform to the literature since the diagonal components are found to
decrease with particle inertia whatever the directions as previously observed by Wang and Squires (1996a).
They used a two-phase flow LES simulation in which various sþp ranging from 9 up to 800 were tested. A qual-
itative comparison with the results obtained for the lower value of sþp can be made. In that sense, as Wang and
Squires (1996a), the streamwise covariance is found to be the largest comparing with the others diagonal com-
ponents. Concerning the off-diagonal component, a little asymmetry of the curves is observed which would be
more apparent when particle inertia increases according to the results of Wang and Squires (1996a).
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Fig. 10. Off-diagonal components of the covariance fluid-particle tensor. Symbols and lines: same as in Fig. 4.
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5. Conclusion

The influence of the wall-corrections of the drag coefficient and of the lift force on the dispersed phase sta-
tistics has been investigated in the case of moderate Reynolds number gas–solid channel flow simulation with-
out external forces. Results show that the drag corrections and the use of the optimum lift force have a
negligible impact on the dispersed phase statistics such as concentration profiles, mean streamwise fluid
and particles velocities, root mean square of the particle velocities, drift velocities, fluid Reynolds tensor at
particle location and fluid-particle covariance tensor. Consequently, the main phenomena (dispersion and
deposition) involved in particle-laden channel flows are not expected to be strongly affected by these quite
small differences. These results are consistent with the LES study by Wang et al. (1997), which was devoted
to the influence of the lift force in the simulations of particle deposition in confined turbulent flows, since they
found a small overall effect of this force on the deposition rates. Taking these results into consideration, we
believe that the introduction, in the particle equation of motion, of the quite complicated formulation of
the optimum lift force and the corrections of the drag force is not necessary. This conclusion is only valid
under certain restrictions such as the absence of gravity force and purely elastic particle-wall collisions, since
these two latter effects could largely increase the mean streamwise relative velocity and thus the lift force.
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